ORTAOKUL MATEMATİK ÖĞRETMENLERİNİN UZMANLIK ALAN BİLGİLERİNİN MATEMATİKSEL HATALAR BAĞLAMINDA İNCELENMESİ
Abstract
EXAMINATION OF MIDDLE SCHOOL MATHEMATICS TEACHERS' SPECIALIZED CONTENT KNOWLEDGE WITH RESPECT TO MATHEMATICAL ERRORS
In this study, a secondary school teacher's specialized content knowledge in the linear equations with one unknown for 7th grade students have been examined with respect to mathematical errors made in class. Teachers' duties and responsibilities regarding mathematics within the conceptual framework of "Mathematical Knowledge for Teaching" (MKT) developed by Ball, Thames and Phelps (2008) is adopted in the examination of mathematics teachers' specialized content knowledge (SCK). Information was obtained about teachers' specialized content knowledge by way of observing the duties in question in classroom environment. In the meantime, the researcher noted the mathematical errors the teacher made in classes. Conducting detailed analysis by focusing on a middle school mathematics teacher, knowledge used in teaching the concept of equation and the errors made by the teacher during class were examined. The study was carried out using special case study design, one of several qualitative study methods. The middle school mathematics teacher who agreed to participate in the study was interviewed on the specialized content knowledge component of the MKT model. 8 class hours of teaching process of the teacher was observed, and video recorded. Once the teaching processes were completed, another general interview was made with the mathematics teacher. A descriptive analysis and content analysis were performed on the obtained data. In conclusion, the mathematics teacher was found to lack a sufficient level of specialized content knowledge. In particular, missing information provided and errors made by the teacher during lecturing adversely affected the learning process.
Keywords: mathematical knowledge for teaching, specialized content knowledge, mathematics teacher, equation concept
Öz
Bu çalışmada, bir ortaokul matematik öğretmeninin 7. Sınıf birinci dereceden bir bilinmeyenli denklemler konusuna ilişkin uzmanlık alan bilgisi, derste ortaya çıkan matematiksel hatalar bağlamında incelenmiştir. Matematik öğretmeninin uzmanlık alan bilgisinin (UAB) incelenmesinde, Ball, Thames ve Phelps (2008) tarafından geliştirilen, “Öğretmek İçin Matematik Bilgisi” (ÖMB) kuramsal çerçevesindeki, öğretmenin matematik ile ilişkili görev ve sorumluluklarından yararlanılmıştır. Söz konusu görevlerin sınıf ortamında gözlemlenmesiyle öğretmenin uzmanlık alan bilgisine dair bilgiler edinilmiştir. Bu süreçte öğretmenin derslerinde yapmış olduğu matematiksel hatalar araştırmacı tarafından not edilmiştir. Bir ortaokul matematik öğretmeni özelinde detaylı incelemeler yapılarak, denklem kavramı öğretiminde kullanılan bilgiler araştırırılmış ve öğretmenin derste yaptığı matematiksel hatalar incelenmiştir. Araştırma nitel araştırma yöntemlerinden biri olan özel durum çalışması deseninden yararlanılarak yürütülmüştür. Çalışmaya gönüllü olarak katılmayı kabul eden ortaokul matematik öğretmeniyle ÖMB modelinin uzmanlık alan bilgisi bileşenine ilişkin bir görüşme yapılmıştır. Sonrasında matematik öğretmeninin 8 ders saatlik öğretim süreci gözlenmiş ve video kamera ile kaydedilmiştir. Öğretim süreçlerinin tamamlanmasının ardından matematik öğretmeni ile genel bir görüşme daha yapılmıştır. Elde edilen verilere betimsel ve içerik analizi uygulanmıştır. Araştırma sonucunda, matematik öğretmeninin uzmanlık alan bilgisinin yeterli düzeyde olmadığı sonucuna ulaşılmıştır. Öğretmenin özellikle konu anlatımı sırasında verdiği eksik ilgiler ve yapmış olduğu hatalar öğrenme sürecini olumsuz etkilemiştir.
Anahtar Sözcükler: öğretmek için matematik bilgisi, uzmanlık alan bilgisi, matematik öğretmeni, denklem kavramı
KAYNAKÇA
Ball, D. L. (1990a). The mathematical understandings that prospective teachers bring to teacher education. Elementary School Journal, 90(4), 449–466.
Ball, D. L., Lubienski, S. T., & Mewborn, D. S. (2001). Research on teaching mathematics: The unsolved problem of teachers’ mathematical knowledge. Handbook of research on teaching, 4, 433-456.
Ball, D. L., Hill, H. H., & Bass, H. (2005). Knowing mathematics for teaching: Who knows mathematics well enough to teach third grade, and how can we decide? American Educator, pp. 14-46.
Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389-407.
Bütün, M. (2005). A study on the qualifications of primary mathematics teachers' pedagogical content knowledge (Unpublished master‟ s thesis). Karadeniz Technical University, Trabzon, Turkey.
Carter, G. & Norwood, K. S. (1997). The relationship between teacher and student beliefs about mathematics. School Science and Mathematics, 97(2), 62-66.
Contreras, J. M., Batanero, C., Díaz, C., & Fernandes, J. A. (2011, February). Prospective teachers‟ common and specialized knowledge in a probability task. Paper presented at The Seventh Congress of the European Society for Research in Mathematics Education, Poland.
Davidenko, S. (1997). Building the concept of function from students' everyday activities. The Mathematics Teacher, 90(2), 144-149.
Dede, Y. & Argün, Z. (2003). Why do students have difficulty with algebra? Hacettepe University Journal of Education, 24, 180-185
Eisenhart, M. ve Borko, H. (1993). Designing Classroom Research: Themes, Issues and Struggles. Boston, MA: Allyn and Bacon.
Erdem Z.Ç. & Gürbüz R. (2017). An Analysis on Students’ Mistakes and Misconceptions: The Case of Equations. YYU Journal Of Education Faculty, 14(1), 640-670.
Erkuş, A. (2013). Scientific research process for behavioral sciences [Davranış bilimleri için bilimsel araştırma süreci]. Ankara: Seçkin Publishing, Volume 3.
Ernest, P. (1989). The Knowledge, Beliefs and Attitudes of the Mathematics Teacher: A Model. Journal of Education for Teaching, 15 (1), 13-33.
Hill, H. C., & Lubienski, S. T. (2007). Teachers’ mathematics knowledge for teaching and school context: A study of California teachers. Educational Policy, 21(5), 747–768.
Hill, H. C., Blunk, M. L., Charalambous, C. Y., Lewis, J. M., Phelps, G. C., Sleep, L., & Ball, D. L. (2008). Mathematical knowledge for teaching and the mathematical quality of instruction: An exploratory study. Cognition and instruction, 26(4), 430-511.
Jóhannsdóttir, B. (2013). The Mathematical Content Knowledge of Prospective Teachers in Iceland (Doctoral dissertation, Columbia University).
Kieran, C. (1992). The learning and teaching of school algebra. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 390-419). New York: Macmillan.
Küchemann, D. (1978). Children's understanding of numerical variables. Mathematics in school, 7(4), 23-26.
Lacampagne, C. (1995). Conceptual framework for the algebra initiative of the national instutute on student achievement, curriculum and assesment. (Eds. Lacampagne, C., Blair, W. and Kaput, J.). The algebra initiative colloquium, 2, 237-242
Leatham, K. R. (2006). Viewing mathematics teachers’ beliefs as sensible systems. Journal of Mathematics Teacher Education, 9, 91-102.
Leinhardt, G., Smith, D.A. (1985). Expertise in mathematics instruction: Subject matter knowledge. Journal of Educational Psychology, 77 (3) , 247-271.
Merriam, S. B. (2013). Qualitative research: A guide to design and implementation. 3rd edition, Ankara: Nobel Academic Publishing.
NCTM, P. (2000). Principles and Standards for School Mathematics, Reston, VA. EE. UU.
Oktaç, A. (2009). İlköğretimde Karşılaşılan Matematiksel Zorluklar ve Çözüm Önerileri. Bingölbali, E., Özmantar, M.F. (Ed.). Denklemler konusunda karşılaşılan zorluklar: 9, 241-262
Pajares, M. F. (1992). Teachers’ beliefs and educational research: Cleaning up a messy construct. Review of Educational Research, 62, 307-332.
Perso, T.(1992). Using diagnostic teaching to overcome misconceptions in algebra. The Mathematical Association of Western Australia.
Pino-Fan, L. R., Godino, J. D., Font, V., & Castro, W. F. (2013, February). Prospective teacher‟s specialized content knowledge on derivative. Paper presented at The Eight Congress of the European Society for Research in Mathematics Education, Turkey.
Rowland, T., Huckstep, P., & Thwaites, A. (2005). Elementary teachers’ mathematics subject knowledge: The knowledge quartet and the case of Naomi. Journal of Mathematics Teacher Education, 8(3), 255–281.
Shulman, L.S. (1986). Those who understand: Knowledge Growth in Teaching. Educational Researcher, 15(2), 4-14.
Soylu, Y. (2008). 7th grade students interpretation of algebraic expressions and letter symbols (variables) and errors in this interpretation [Öğrencilerin cebirsel ifadeleri ve harf sembollerini (değişkenleri) yorumlamaları ve bu yorumlamada yapılan hatalar]. Selcuk University Ahmet Kelesoglu Journal of Education Faculty, 25, 237-248.
Stacey, K., & Mac Gregor, M. (1997). Ideas about symbolism that students bring to algebra. The Mathematics Teacher, 90(2), 110-113.
Tavşancıl, E., & Aslan, E. (2001). Content analysis and examples of practices [İçerik analizi ve uygulama örnekleri]. İstanbul: Epsilon Publishing.
Tekin-Sitrava, R. & Işıksal-Bostan, M. (2013). In-Service Mathematics Teacher‟s Mathematical Knowledge For Teaching: A Case Of Volume Of Prism. Paper presented at 8th Congress of European Research in Mathematics Education (CERME 8), Antalya, Turkey.
Thompson, A. G. (1992). Teachers’ beliefs and conceptions: a synthesis of research. D.A. Grouws (Ed.), Handbook of Research on Mathematics Teaching and Learning, (ss. 127–146). New York: Macmillan Publishing Company.
Usiskin, Z. (1988). Conceptions of school algebra and uses of variables. In A. F. Coxford,& A. P. Shulte (Eds.), The ideas of algebraK-12 Virginia: The NationalCouncil of Teachers Of Mathematics, Inc.
Vlassis, J. (2002). The balance model: Hindrance or support for the solving of linear equations with one unknown. Educational Studies in Mathematics, 49(3), 341-359.
Warren, E., & Cooper T. (2005). Young children’s ability to use the balance strategy to solve for unknowns. Mathematics Education Research Journal, 17(1), 58-72.
Yeşildere, S. (2007). The Competencies of Prospective Primary School Mathematics Teachers in Using Mathematical Language. Boğaziçi University Journal of Education, 24(2), 61-70.
Zaskis, R. & Liljedahl, P. (2002). Generalization of patterns: The tension between algebraic thinking and algebraic notation. Educational Studies in Mathematics, 49, 379-402
Downloads
Published
Issue
Section
License
Copyright (c) 2019 International Journal of New Trends in Arts, Sports & Science Education (IJTASE)
This work is licensed under a Creative Commons Attribution 4.0 International License.